Limits

Computing Limits Using the Laws of Limits

Prasanth G .N

Department of Mathematics Government College Chittur

March 28, 2020

2 Limits of Polynomial and Rational Functions

LAW - 1: Limit of a Constant Function f(x) = c

If c is a real number, then

$$\lim_{x\to a} f(x) = \lim_{x\to a} c = c$$

 $\lim_{x\to 2} 5 = 5$

Example

 $\lim_{x\to -1} 3 = 3$

Example

 $\lim_{x\to 0} 2\pi = 2\pi$

LAW - 2: Limit of the Identity Function f(x) = x

$$\lim_{x \to a} f(x) = \lim_{x \to a} x = a$$

Graphical Description

 $\lim_{x\to 4} x = 4$

Example

 $\lim_{x\to 0} x = 0$

Example

 $\lim_{x \to -\pi} x = -\pi$

LIMIT LAWS

If $\lim_{x\to a} f(x) = L$ and $\lim_{x\to a} g(x) = M$, then we have the following laws.

LAW - 3: Sum Law

 $\lim_{x\to a} f(x) \pm g(x) = L \pm M$

LAW - 4: Product Law

 $\lim_{x\to a} [f(x)g(x)] = LM$

LAW - 5: Constant Multiple Law

 $\lim_{x\to a} [cf(x)] = cL, \text{ for every } c.$

LAW - 6: Quotient Law

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{L}{M}, \text{ provided } M \neq 0.$$

Prasanth (GCC)

LIMIT LAWS

LAW - 6: Root Law

 $\lim_{x\to a} \sqrt[n]{f(x)} = \sqrt[n]{L}$, provided that *n* is a positive integer, and L > 0 if *n* is even.

Remark

Sum Law and the Product Law are stated for two functions, they are also valid for any finite number of functions. That is if $\lim_{x \to a} f_1(x) = L_1, \lim_{x \to a} f_2(x) = L_2, \dots, \lim_{x \to a} f_n(x) = L_n$, then we have the following

$$\lim_{x \to a} [f_1(x) + f_2(x) + \dots + f_n(x)] = L_1 + L_2 + \dots + L_n$$

$$\lim_{x \to a} [f_1(x)f_2(x)\cdots f_n(x)] = L_1 L_2 \cdots L_n \tag{1}$$

Remark

If we take $f_1(x) = f_2(x) = \cdots = f_n(x) = f(x)$, then Equation (1) gives the following result for powers of f.

LAW 8:

If n is a positive integer and
$$\lim_{x\to a} f(x) = L$$
, then $\lim_{x\to a} [f(x)]^n = L^n$.

Remark

If we take f(x) = x, then Equation (1) and Law (8) give the following result.

LAW 9:

$$\lim_{x \to a} x^n = a^n \text{ where } n \text{ is a positive integer}$$

Find
$$\lim_{x \to 2} 2x^3 - 4x^2 + 3$$

$$\lim_{x \to 2} 2x^3 - 4x^2 + 3 = \lim_{x \to 2} 2x^3 - \lim_{x \to 2} 4x^2 + \lim_{x \to 2} 3$$

$$= 2\lim_{x \to 2} x^3 - 4\lim_{x \to 2} x^2 + \lim_{x \to 2} 3$$

$$= 2(2)^3 - 4(2)^2 + 3$$

$$= 3.$$
Law 9

LAW 10: Limits of Polynomial Functions

If $p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ is a polynomial function, then $\lim_{x \to a} p(x) = p(a).$

Proof by repeated applycation of the (generalized) sum law and the constant multiple law.

$$\lim_{x \to a} p(x) = \lim_{x \to a} a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

= $a_n (\lim_{x \to a} x^n) + a_{n-1} (\lim_{x \to a} x^{n-1}) + \dots + \lim_{x \to a} a_0$

By laws 1, 2, and 9,

$$\lim_{x\to a} p(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0$$
$$= p(a)$$

LAW - 11: Limits of Rational Functions

If f is a rational function defined by $f(x) = \frac{P(x)}{Q(x)}$, where P(x) and Q(x) are polynomial functions and $Q(a) \neq 0$, then $\lim_{x \to a} f(x) = f(a) = \frac{P(a)}{Q(a)}$

Proof.

By applying LAW 10 and using the quotient law

- If the numerator does not approach 0 but the denominator does, then the limit of the quotient does not exist.
- A function whose limit at a can be found by evaluating it at a is said to be continuous at a.

Theorem (Limits of Trigonometric Functions)

Let a be a number in the domain of the given trigonometric function. Then

• $\lim_{x \to a} \sin x = \sin a$	• $\lim_{x \to a} \cot x = \cot a$
• $\lim_{x \to a} \cos x = \cos a$	• $\lim_{x \to a} \sec x = \sec a$
• $\lim_{x \to a} \tan x = \tan a$	• $\lim_{x \to a} \csc x = \csc a$

The above techniques that we have developed so far do not work in all situations. For example, $\lim_{x\to 0} x^2 \sin(\frac{1}{x})$. Hence in such cases we apply **Squeeze Theorem**

Theorem (The Squeeze Theorem)

Suppose that $f(x) \le g(x) \le h(x)$, for all x in an open interval containing a, except possibly at a, and $\lim_{x\to a} f(x) = L = \lim_{x\to a} h(x)$ Then $\lim_{x\to a} g(x) = L$.

Find
$$\lim_{x \to a} x^2 \sin(\frac{1}{x})$$

Since $-1 \le \sin t \le 1$ for every real number *t*, we have for every $x \ne 0$, $-1 \le \sin \frac{1}{x} \le 1$. Therefore for all

$$x \neq 0, -x^2 \le x^2 \sin \frac{1}{x} \le x^2$$

By choosing $f(x) = -x^2$, $g(x) = x^2 \sin \frac{1}{x}$, $h(x) = x^2$, we have $f(x) \le g(x) \le h(x)$. Since $\lim_{x \to 0} f(x) = \lim_{x \to 0} (-x^2) = 0 = \lim_{x \to 0} h(x) = \lim_{x \to 0} (x^2)$, By **Squeeze theorem** we have $\lim_{x \to 0} g(x) = 0$.

Theorem

Suppose that $f(x) \leq g(x)$ for all x in an open interval containing a, except possibly at a, and $\lim_{x \to a} f(x) = L$ and $\lim_{x \to a} g(x) = M$. Then $L \leq M$.

Theorem

$$\lim_{x \to 0} \frac{\sin x}{x} = 0$$

Proof.

Suppose $0 < x < \frac{\pi}{2}$. From the Figrue just shown, we have the following.

Area of
$$\triangle ABC = \frac{1}{2}(1) \sin x = \frac{1}{2} \sin x$$

Area of sector $ABC = \frac{1}{2}(1)^2 x = \frac{1}{2}x$
Area of $\triangle ABD = \frac{1}{2}(1) \tan x = \frac{1}{2} \tan x$
 $\frac{1}{2}base.height}{\frac{1}{2}r^2x}$

Since 0 < Area of $\Delta ABC <$ Area of sector ABC < Area of $\Delta ABD,$ we have

$$0 < \frac{1}{2}\sin x < \frac{1}{2}x < \frac{1}{2}\tan x$$
 (2)

. We know that in the interval $0 < x < \frac{\pi}{2}$, we have $\sin x > 0, \cos x > 0$ Multiplying the equation 2 throughout by $\frac{2}{\sin x}$, we get

$$1 < \frac{x}{\sin x} < \frac{1}{\cos x}$$

Prasanth (GCC)

Proof.

That is

$$\cos x < \frac{\sin x}{x} < 1 \tag{3}$$

if $-\frac{\pi}{2} < x < 0$, then $0 < -x < \frac{\pi}{2}$ and Inequality (3) gives

$$\cos(-x) < \frac{\sin(-x)}{(-x)} < 1$$

$$\cos x < \frac{\sin x}{x} < 1$$
 which is same as Inequality (3)

Therefore the inequality (3) holds whenever x lies in $\left(-\frac{\pi}{2}, 0\right)$ and $\left(0, \frac{\pi}{2}\right)$. Now choose $f(x) = \cos x, g(x) = \frac{\sin x}{x}, h(x) = 1$, and $\lim_{x \to 0} f(x) = \lim_{x \to 0} \cos x = 1$ and $\lim_{x \to 0} h(x) = \lim_{x \to 0} 1 = 1$, by **Squeeze theorem** we have $\lim_{x \to 0} g(x) = \lim_{x \to 0} \frac{\sin x}{x} = 1$

Theorem

$$\lim_{x\to 0}\frac{\cos x-1}{x}=0$$

Proof.

We know that $\sin^2 \theta = \frac{1}{2}(1 - \cos 2\theta)$, by choosing $2\theta = x$, we have $1 - \cos x = 2\sin^2 \frac{x}{2}$. Then

$$\lim_{x \to 0} \frac{\cos x - 1}{x} = \lim_{x \to 0} \left(\frac{-2\sin^2(\frac{x}{2})}{x} \right)$$
$$= \lim_{x \to 0} \left(-\sin \frac{x}{2} \right) \left(\frac{\sin \frac{x}{2}}{\frac{x}{2}} \right)$$
$$= -\lim_{x \to 0} \left(\sin \frac{x}{2} \right) \left(\frac{\sin \frac{x}{2}}{\frac{x}{2}} \right)$$
$$= 0.1$$
$$= 0.$$