# Limits <br> Computing Limits Using the Laws of Limits 

Prasanth G .N

Department of Mathematics Government College Chittur

March 28, 2020
(1) Computing Limits Using the Laws of Limits
(2) Limits of Polynomial and Rational Functions
(3) Limits of Trigonometric Functions

## LAW - 1: Limit of a Constant Function $f(x)=c$

If $c$ is a real number, then

$$
\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} c=c
$$

## Graphical Description



## Example

$\lim 5=5$
$x \rightarrow 2$

## Example

$\lim _{x \rightarrow-1} 3=3$

## Example $\lim _{x \rightarrow 0} 2 \pi=2 \pi$

## LAW - 2: Limit of the Identity Function $f(x)=x$

$$
\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} x=a
$$

## Graphical Description



## Example

$\lim _{x \rightarrow 4} x=4$

## Example

$\lim _{x \rightarrow 0} x=0$

Example
$\lim _{x \rightarrow-\pi} x=-\pi$

## LIMIT LAWS

If $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a} g(x)=M$, then we have the following laws.
LAW - 3: Sum Law
$\lim _{x \rightarrow a} f(x) \pm g(x)=L \pm M$
LAW - 4: Product Law
$\lim _{x \rightarrow a}[f(x) g(x)]=L M$

## LAW - 5: Constant Multiple Law

$\lim _{x \rightarrow a}[c f(x)]=c L$, for every $c$.
LAW - 6: Quotient Law
$\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{L}{M}$, provided $M \neq 0$.

## LIMIT LAWS

## LAW - 6: Root Law

$\lim _{x \rightarrow a} \sqrt[n]{f(x)}=\sqrt[n]{L}$, provided that $n$ is a positive integer, and $L>0$ if $n$ is $\stackrel{x}{x \rightarrow a}$

## Remark

Sum Law and the Product Law are stated for two functions, they are also valid for any finite number of functions. That is if
$\lim _{x \rightarrow a} f_{1}(x)=L_{1}, \lim _{x \rightarrow a} f_{2}(x)=L_{2}, \ldots, \lim _{x \rightarrow a} f_{n}(x)=L_{n}$, then we have the following

$$
\begin{align*}
\lim _{x \rightarrow a}\left[f_{1}(x)+f_{2}(x)+\cdots+f_{n}(x)\right] & =L_{1}+L_{2}+\cdots+L_{n} \\
\lim _{x \rightarrow a}\left[f_{1}(x) f_{2}(x) \cdots f_{n}(x)\right] & =L_{1} L_{2} \cdots L_{n} \tag{1}
\end{align*}
$$

## Remark

If we take $f_{1}(x)=f_{2}(x)=\cdots=f_{n}(x)=f(x)$, then Equation (1) gives the following result for powers of $f$.

## LAW 8:

If $n$ is a positive integer and $\lim _{x \rightarrow a} f(x)=L$, then $\lim _{x \rightarrow a}[f(x)]^{n}=L^{n}$.

## Remark

If we take $f(x)=x$, then Equation (1) and Law (8) give the following result.

## LAW 9:

$\lim _{x \rightarrow x^{n}}=a^{n}$ where $n$ is a positive integer $x \rightarrow a$

## Example

Find $\lim _{x \rightarrow 2} 2 x^{3}-4 x^{2}+3$

$$
\begin{aligned}
\lim _{x \rightarrow 2} 2 x^{3}-4 x^{2}+3 & =\lim _{x \rightarrow 2} 2 x^{3}-\lim _{x \rightarrow 2} 4 x^{2}+\lim _{x \rightarrow 2} 3 & & \text { Law } 3 \\
& =2 \lim _{x \rightarrow 2} x^{3}-4 \lim _{x \rightarrow 2} x^{2}+\lim _{x \rightarrow 2} 3 & & \text { Law } 5 \\
& =2(2)^{3}-4(2)^{2}+3 & & \text { Law } 9 \\
& =3 . & &
\end{aligned}
$$

## LAW 10: Limits of Polynomial Functions

If $p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ is a polynomial function, then $\lim _{x \rightarrow a} p(x)=p(a)$.

Proof by repeated applycation of the (generalized) sum law and the constant multiple law.

$$
\begin{aligned}
\lim _{x \rightarrow a} p(x) & =\lim _{x \rightarrow a} a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} \\
& =a_{n}\left(\lim _{x \rightarrow a} x^{n}\right)+a_{n-1}\left(\lim _{x \rightarrow a} x^{n-1}\right)+\cdots+\lim _{x \rightarrow a} a_{0}
\end{aligned}
$$

By laws 1, 2, and 9,

$$
\begin{aligned}
\lim _{x \rightarrow a} p(x) & =a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots a_{0} \\
& =p(a)
\end{aligned}
$$

## LAW - 11: Limits of Rational Functions

If $f$ is a rational function defined by $f(x)=\frac{P(x)}{Q(x)}$, where $P(x)$ and $Q(x)$ are polynomial functions and $Q(a) \neq 0$, then $\lim _{x \rightarrow a} f(x)=f(a)=\frac{P(a)}{Q(a)}$

## Proof.

By applying LAW 10 and using the quotient law
(1) If the numerator does not approach 0 but the denominator does, then the limit of the quotient does not exist.
(2) A function whose limit at $a$ can be found by evaluating it at $a$ is said to be continuous at a.

## Theorem (Limits of Trigonometric Functions)

Let a be a number in the domain of the given trigonometric function. Then

- $\lim \sin x=\sin a$ $x \rightarrow a$
- $\lim _{x \rightarrow a} \cos x=\cos a$
- $\lim \tan x=\tan a$
- $\lim _{x \rightarrow a} \cot x=\cot a$
- $\lim _{x \rightarrow a} \sec x=\sec a$
- $\lim \csc x=\csc a$

The above techniques that we have developed so far do not work in all situations. For example, $\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{1}{x}\right)$. Hence in such cases we apply Squeeze Theorem

## Theorem (The Squeeze Theorem)

Suppose that $f(x) \leq g(x) \leq h(x)$, for all $x$ in an open interval containing a, except possibly at $a$, and $\lim _{x \rightarrow a} f(x)=L=\lim _{x \rightarrow a} h(x)$ Then $\lim _{x \rightarrow a} g(x)=L$.


## Example

Find $\lim _{x \rightarrow a} x^{2} \sin \left(\frac{1}{x}\right)$

Since $-1 \leq \sin t \leq 1$ for every real number $t$, we have for every $x \neq 0$, $-1 \leq \sin \frac{1}{x} \leq 1$. Therefore for all

$$
x \neq 0,-x^{2} \leq x^{2} \sin \frac{1}{x} \leq x^{2}
$$

By choosing $f(x)=-x^{2}, g(x)=x^{2} \sin \frac{1}{x}, h(x)=x^{2}$, we have $f(x) \leq g(x) \leq h(x)$. Since $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0}\left(-x^{2}\right)=0=\lim _{x \rightarrow 0} h(x)=\lim _{x \rightarrow 0}\left(x^{2}\right)$, By Squeeze theorem we have $\lim _{x \rightarrow 0} g(x)=0$.


## Theorem

Suppose that $f(x) \leq g(x)$ for all $x$ in an open interval containing a, except possibly at $a$, and $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a} g(x)=M$. Then $L \leq M$.

Theorem

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=0
$$



## Proof.

Suppose $0<x<\frac{\pi}{2}$. From the Figrue just shown, we have the following.

$$
\begin{aligned}
\text { Area of } \triangle A B C & =\frac{1}{2}(1) \sin x=\frac{1}{2} \sin x & \frac{1}{2} \text { base.height } \\
\text { Area of sector } A B C & =\frac{1}{2}(1)^{2} x=\frac{1}{2} x & \frac{1}{2} r^{2} x \\
\text { Area of } \triangle A B D & =\frac{1}{2}(1) \tan x=\frac{1}{2} \tan x &
\end{aligned}
$$

Since $0<$ Area of $\triangle A B C<$ Area of sector $A B C<$ Area of $\triangle A B D$, we have

$$
\begin{equation*}
0<\frac{1}{2} \sin x<\frac{1}{2} x<\frac{1}{2} \tan x \tag{2}
\end{equation*}
$$

. We know that in the interval $0<x<\frac{\pi}{2}$, we have $\sin x>0, \cos x>0$ Multiplying the equation 2 throughout by $\frac{2}{\sin x}$, we get

$$
1<\frac{x}{\sin x}<\frac{1}{\cos x}
$$

## Proof.

That is

$$
\begin{equation*}
\cos x<\frac{\sin x}{x}<1 \tag{3}
\end{equation*}
$$

if $-\frac{\pi}{2}<x<0$, then $0<-x<\frac{\pi}{2}$ and Inequality (3) gives

$$
\cos (-x)<\frac{\sin (-x)}{(-x)}<1
$$

$\cos x<\frac{\sin x}{x}<1$ which is same as Inequality (3)
Therefore the inequality (3) holds whenever $x$ lies in $\left(-\frac{\pi}{2}, 0\right)$ and $\left(0, \frac{\pi}{2}\right)$.
Now choose $f(x)=\cos x, g(x)=\frac{\sin x}{x}, h(x)=1$, and $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \cos x=1$ and $\lim _{x \rightarrow 0} h(x)=\lim _{x \rightarrow 0} 1=1$, by Squeeze theorem we have $\lim _{x \rightarrow 0} g(x)=\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$

## Theorem

$$
\lim _{x \rightarrow 0} \frac{\cos x-1}{x}=0
$$

## Proof.

We know that $\sin ^{2} \theta=\frac{1}{2}(1-\cos 2 \theta)$, by choosing $2 \theta=x$, we have $1-\cos x=2 \sin ^{2} \frac{x}{2}$. Then

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\cos x-1}{x} & =\lim _{x \rightarrow 0}\left(\frac{-2 \sin ^{2}\left(\frac{x}{2}\right)}{x}\right) \\
& =\lim _{x \rightarrow 0}\left(-\sin \frac{x}{2}\right)\left(\frac{\sin \frac{x}{2}}{\frac{x}{2}}\right) \\
& =-\lim _{x \rightarrow 0}\left(\sin \frac{x}{2}\right)\left(\frac{\sin \frac{x}{2}}{\frac{x}{2}}\right) \\
& =0.1 \\
& =0
\end{aligned}
$$

